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A heat bath combined with a Metropolis method for updating the links of lattice gauge 
theory is proposed. It is a variation of the method of N. Cabibbo and E. Marinari [Phys. Lett. 
B 119, 387 (1982)], but is better suited for vectorized programs and parallel processors. It 
preserves the essential features of that method, but runs at a slightly faster speed. 0 1986 

Academic Press, Inc. 

Recently, calculations of SU(3) gauge theory have been carried out on large size 
lattices by many groups [ 11. All of them used vectorized programs on a mainframe 
computer or parallel array processors in SIMD mode. Several projects to build a 
special purpose array processor for fast computations in lattice gauge theory are in 
progress [2,9]. There are two commonly used algorithms to update the link 
variables: the Metropolis [3] method and a heat bath method proposed by 
Cabibbo and Marinari [4] (hereafter called C-M heat bath). It is known that the 
C-M heat bath algorithm runs faster than the Metropolis algorithm, and that the 
correlation of successive sweeps using heat bath updates is about one-half of that of 
Metropolis updates [4, lo]. Taking this effect into account, the heat bath algorithm 
runs about three times faster than the Metropolis algorithm. 

A problem arises when applying the C-M heat bath method in vectorized 
processing. In a vectorized program, many links are updated synchronously in 
order to speed up the update. The C-M method involves an accept-reject 
procedure which may have to be repeated many times until a trial is accepted. This 
probabilistic procedure makes the synchronous update inefficient. Let us first 
describe it in the context of the SU(2) case, since the SU(3) case is similar. The 
simple and efficient heat bath algorithm, introduced by Creutz [S], generates the 
random variable a,, according to the distribution 

We have parametrized the SU(2) matrix as a = a,,Q + ia. (r, where 0“ are the three 
Pauli matrices, /3 =4/g’, and R is the determinant of the sum of environment link 
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products. This is done in two steps: the first step is to generate a random number 
:I:, uniformly distributed in the interval [0, 11. A trial a(1 is obtained by solving 

where Z is the normalization constant. The second step is to accept this CL” with the 
probability Jq. Generate a second random number :cz in the interval [0, 11. 
If :zz is less than or equal to Jq, accept this aO. If not, go back to the first 
step to try a new n,,. Do this accept reject iteration until a trial of JQ~ is accepted. 
Since the accept--reject iteration is probabilistic, the number of iterations of this 
accept--reject procedure varies from one link to the next. For a vectorized program 
or synchronous SlMD processing with a large number of synchronous updates. this 
means that while one particular update is being iterated many times, all other link 
processes which have already finished the accept-reject are waiting, doing nothing. 
This happens almost all the time. For example, for the SU(3) gauge theory with 
/I= 6.0 and three X42) subgroup updates, the average number of iterations is 
about 3.2. This implies that in a l&node parallel processor SIMD update. an 
average number of 10 iterations will be required by the slowest processor (see 
Appendix A). This significantly slows down the efficient heat bath algorithm. Some 
suggestions for avoiding this slowdown has been made [6]. 

A modified version of the algorithm provides a way out. We argue that the 
accept-reject procedure can be replaced by a Metropolis-like algorithm. The idea is 
to USC a mixed heat bath Metropolis method [7]. The general setting is the 
following: write the action as 

A(U)=A,(U)+A,(U) 

where U is a configuration (or a point in phase space). Let the old configuration bc 
Co. To generate a new configuration U, according to the Boltzmann distribution 
exp( - A( U,)) using the mixed method, one first generates a trial U, according to 
exp( -A()( r/r,)) using the heat bath method, and then accepts or rejects this trial U, 
according to exp( -A ,( U, )) using the Metropolis method; i.e., if A ,( Cr,) - A, ( UC,) is 
less than or equal to 0, accept this U, as the new configuration; if A I( U,) - A ,( I;,) 
is greater than 0, accept the U, according to the probability exp( - (A,( U,) -- 
A,( U,))). This process can be repeated a fixed number of times to reduce the 
correlation between sweeps. The corresponding transition probability W( c’,, -+ U,) 
can be written as [S] 

W(U,+ U,)=Z 1, nO(C:). min{ 1, e--rn,(c’l)- al~cOll} 

where Z=s e--.4’r’) dU. It is easy to see that this W( U0 -+ U,) satisfies the detailed 
balance equation 

W(U, + cl,) e n(r;!) =--- 
W(U, -+ fJ,) cA([jO) 
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and the normalization condition 

Next let us consider the application of this new method to the case of SU(2) lattice 
gauge theory. If we treat U as a single SU(2) link variable, eeAcU1) dU1 in Eq. (1) 
can be written as 

e -*(“I) &J1 = JK; e~~~oePb-~)~o. da,, dQ (2) 

where U, = DZ+; a = aOQ + i*x;. (r is a new SU(2) matrix to be determined according 
to the probability of Eq. (2); dQ is the differential solid angle of KZ with ai + ~2,~ = 1; 
/c is a SU(2) matrix obtained from the environment sum R = Aa; and K is a new free 
parameter. We treat d- . epZao as e PAo(U) and eP(A-Z)“o as ePAI(U). Note that 
the update is indirect: the old a is not Uo; it is U,y instead. The new algorithm 
proceeds as follows: generate a uniform random ml between 0 and 1. Next, invert 

to obtain a trial -a,,. This ctO has the distribution (2) without the last factor. To 
include the last factor we do a Metropolis accept-reject: accept this ,,(new) 
according to the probability P: 

if 
P= 1, (4 - 2). (aO(new) - aO(old)) > 0, 

ep(d - X)(&new) - ao(old)) otherwise. (4) 

If aO(new) is not accepted, we keep the old link. Note that in the case where 
,,(new) is rejected, since the probability in Eq. (2) does not depend on the direc- 
tion of a in the 2-sphere, we may still update this link by keeping aa,(old) ad ran- 
domly changing ct(old) to a(new) with a,,(old)2 + &new)2 = 1. Since the process 
of generating (aO, a) is repeated a fixed number of times, there is no slowdown due 
to processor waiting or a large number of rejections. Choosing the free parameter K 
such that eP(i-Z)fio is close to unity and making a lookup table for the factor 
Jzz ePikao (because R depends on the environment and varies from one link to 
the other, we cannot make a lookup table for the probability in Eq. (1 )), this par- 
ticular breakup in Eq. (2) can be implemented very efficiently. 

Our real interest is in the SU(3) lattice gauge theory. For this gauge group, the 
update is a little bit more complicated.’ We need to know what a(old) is. Let U,, be 
the old link to be updated, and R the sum of six environment products. From .!,‘,R, 
take a 2 x 2 block matrix 8 from either the upper left corner, or lower right corner, 
or four corner elements. Write the unitary part of & as Is, where a is a W(2) 
matrix, and A is the determinant of the unitary part. Let U1 be the new link. The 
Cabibbo-Marinari method [4] is to let 

u, = La+uo (5) 
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where n is a SU(2) matrix, and II,*+ has been converted to Sc’(3) matrix by 
reversing the construction of L and adding a diagonal 1 in the missing row and 
column. .Z is determined by the transition probability 

with u uniformly distributed in the 2-sphere. Since U,, = atiUc,, the detailed balance 
Ey. (2) now reads 

Thus the old 11 in the Metropolis piece is L’ The rest of the new algorithm for 
SU(3) is similar to that for SC’(2). Again. we write (6) as 

and do the heat bath as in (3) and the Metropolis as in (4). 
The generation of a0 according to 4’1 - CL;. c*/‘&“o.” can be done by making a 

lookup table and interpolation, since R is a constant. The optimal choice of k is 
obtained by minimizing the variance of 

$P(k - k)(+(new) - +,(old)) (9) 

so as to achieve a high acceptance in the Metropolis accept reject test. A simple 
choice is to set K equal to the average of k. 

WC have done an SU(3) simulation on a 44 lattice to check the new algorithm. 
WC chose /I=6.0 and 5.5. For each /3, we first ran the C--M heat bath a few 
hundred sweeps to estimate the average 1. and then made the lookup tables. We 
use three SU(2) subgroups to update a link and do a single Metropolis hit for the 
last factor in (8) since the acceptance of no is already high enough (larger than 
92 % ). 

At /I = 6.0, the average R is about 3.95; we made one table with k = 4.0 and 8192 
entries, and used a first-order linear interpolation. Roth the C--M heat bath method 
and the new method ran a total of 1400 sweeps. For comparison, we also ran the 
standard Metropolis method for the same number of sweeps. All three runs start 
with a cold start; i.e.: initial links were all set to be unit matrices. Discarding the 
first 400 sweeps for each run, the data are shown in Table I. The acceptance of the 
Metropolis hit in the new method is about 94% in comparison to an acceptance of 
31% for the C -M heat bath. This comes from the fact that the average value of the 
expression in (9) is about -0.12 when it is negative. The new algorithm runs faster. 

‘See Appendix B for more details. 
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TABLE I 

B = 6.0 

Method Action Specific heat Acceptance 

C-M heat bath 0.4034 * 0.0004 3.85*0.18 0.31 
New heat bath 0.4038 f 0.0004 3.53 f 0.16 0.94 
Metropolis 0.4041 _+ 0.0007 3.36 + 0.14 0.61 

because there are fewer arithmetic operations and only one trial. The sweep-to- 
sweep correlation function, defined as 

C(t)=~(A(t+n)-A)$4(n)-A) C(A(n)-A)“, 

n :i n 

is shown in Fig. 1. It is clear that the new method has correlations as small as those 
of the C-M heat bath method and considerably smaller than those of the standard 
Metropolis method. 

At p = 5.5, with K = 3.4, we made two tables of the same size, one with pi equally 
divided in the range [l/1024, 11, the other with s1 in the range [O, l/1024]. Both 
the C-M heat bath method and the new method were run a total of 2000 sweeps, 
starting with the cold start. The Metropolis was also run 2000 sweeps, starting from 
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FIG. 1. Comparison of auto-correlation functions for the three methods at /I = 6.0. The correlation 
function for the Metropolis reaches the noise level (kO.08) at about separation = 15, while that for the 
two heat bath methods, at about 5. 
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TABLE II 

p = 5.5 

Method 
~. ._.. 

C M heat bath 

New heat bath 

Metropolis 

Action Specific heat Acccptancc 
..-.~--. - ~-. ---. ..-~-- .-.... -.--- 

0.498 f 0.002 10.56+0.41 0.34 

0.498 _+ 0.002 10.22 IO.39 0.92 

0.50 1 f 0.003 10.8X = 0.36 0.63 

the old conliguration generated by the 2000 sweeps of the C-M heat bath. Dis- 
carding the first 600 sweeps for the two heat bath runs and the lirst 100 sweeps for 
the Metropolis run, the data arc shown in Table II and Fig. 2. 

From these data, we can see that (i) the new method is in good agreement with 
the C M heat bath method and the standard Metropolis method; (ii) these data are 
in agreement with those of Christ and Terrano [9] and Cabibbo and Marinari [4]; 
(iii) at both /, al v ues, the auto-correlations reach the noise level (about 0.1 or less), 
about three times faster in the two heat bath methods than in the Metropolis 
method. 

Based on these test runs, it seems that the new algorithm provides a good 
solution to the asynchronous heat bath accept--reject problem. It runs about four 
times (taking into account the program speed and the correlation between sweeps) 
faster than the Metropolis algorithm. In high speed computers or parallel array 
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FIG. 2. Comparison of auto-correlation functions for the three methods at /I = 5.5. The correlation 

function for the Metropolis reaches the noise level (kO.1) at about separation = 110. while that for the 
IWO heat bath methods. at about 40. 
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processors, where the environment sums of matrix product are very efficiently 
calculated, the extra speedup, due to the lookup table and fewer repeated trials, 
may become significant. 

The new algorithm was developed mainly to implement the heat bath method in 
the parallel processor (Columbia group [9]); the “odd” table sizes, 1024 = 2” and 
8192 = 2i3, came from the consideration of using these tables in the processor. 

APPENDIX A 

Let M processors update links synchronously and assume that the acceptance of 
the accept-reject procedure of the C-M heat bath follows a simple binomial 
distribution with acceptance probability +z. Let 9 = 1 - p be the probability of 
rejection for one processor in a trial. Then the probability P(n), that only after n 
trials all the processors accept the so’s, is 

P(l)=P, 

P(n)=(l--a”)M-(l--a”-‘)“, n> 1. 
(10) 

Since the probability that the one processor rejects n times in the first n trials is a”, 
the probability that one processor accepts at least once in the n trials is 1 - 9”. The 
probability that each of the A4 processors accepts at least once in n trials is 
(1 - 9”)“. Therefore, the probability that at least one processor accepts for the first 
time at the nth trial is (1 - a”)“” - (1 - a”- ‘)? This is (10). One can easily see that 

since +S < 1. For M = 16 and b = 0.31, the average trial number is fi = C,“= 1 nP(n) = 
9.61. 

APPENDIX B 

In the C-M method, the new link depends on the old link through Eq. (5), and 
the k in the transition probability in Eq. (6) depends on both the environment R 
and the old link U,. Thus, the backward transition in Eq. (7) with U, = a’r’+UI 
should be 

W( U, --) U,) = W( U, + fi’r’+U1) = Jm ’ e2pL’ab/3 (11) 

where r’ and A’ are determined from U, R, not U,R. Both R’ and a’ are needed to 
do the Metropolis accept-reject test. We now show that 

R’=R and r’=a, (12) 
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so that r”U, = n +(“rtUO) = r+U,,. Hence, from the requirement 17, = u’T’+I:‘~ = 
cr’rtU,, we have 

Ir(old) = n’= I 

and 
e-r‘41~c:I) ~l(Lwl = c21f(d d)(nnfncw) <r”cold)) 3 (131 

First, let us look at the Jimwd transition U,, -+ C’, , Ly, = IM+C~~,. For the SC:(3) 
lattice gauge, the action in Wilson form is 

A(U,R)=tRcTr liR 

where c’ is the link to be updated. R is the environment sum as in the texC. For the 
new link U,, we have 

A(U,, R)=tReTr(U,R)=tReTr(ur’ll,R) 

(14) 

= t Re Tr( rLrt6) + terms independent of o.. 

where R is defined in the text and the trace in the second line is taken over the 2 x 2 
matrix. Being a general 2 x 2 complex matrix, G can always be written as 

&=&“+ib.o (lj) 

where b. and R = (6,, d,, Ls) are in general complex numbers. Separate real and 
imaginary parts of C, and 6: extract the normalization factor, and we have 

d= Re kO+ r’(Re d).o+ ;[Im E. + ;(Tm L). C] 

=kt+i/!:j, (16) 

R = /( Re n,,)’ + (Re &)‘, / = ,:‘(lm LO)* + (im 6)’ 

where 7 and .j are SL’(2) matrices, c.g., 

r = r. + t’r . (r, r;l+r’= 1, r. and r are real. 

Note that this r is the same r as in Eq. (5). Now, from Eq. (14), dropping out the 
terms independent of (2, we have 

(17) 
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since Re[; Tr(ar+d)] = 0. Including the factor Jm from the Haar measure of 
the SU(2) group 

we arrive at the transition probability in Eq. (6) (up to a constant factor, which we 
did not write out explicitly, as in Eqs. (1) and (2)). 

Now for the backward transition, U, -+ ct’r’+U1, repeat a similar procedure, 
using the fact that U, = artUo and t5’=U,R=artU,R=art~(Ar+ien)= 
Ra + ifTar+,, we have A(a’r’+ . U,, R) = (p/3) Re Tr(a’rrt&). By definition, 
R’ * r’ = the unitary part of U, R = F&Z, so that 

With A(a’r’+Ul, R) = $M -ah, we have arrived at Eq. (11) with the relation Eq. (12). 
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